Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747084

RESUMO

Distressed western carpenter ants, Camponotus modoc, produce alarm pheromone and substrate-borne vibrations. The alarm pheromone attracts nestmates but the effects of vibratory signals, or of bimodal pheromonal and vibratory signals, are not known. Worker ants of two Camponotus congeners reportedly stand still ("freeze") or run fast in response to engineered drumming vibrations inputted on plastic, but many responses to ant-produced vibratory signals on wood have not yet been investigated. Generally, orientating toward signalers under vertebrate predator attack seems maladaptive and not beneficial to ant colonies. We tested the hypotheses (1) that vibratory alarm signals cause freezing, rapid running but not attraction of nestmates, and (2) that bimodal alarm signals modulate responses to monomodal alarm signals, thereby possibly reducing predation risk. Laser Doppler vibrometry recordings revealed that the ants' vibratory signals readily propagate through ant nest lamellae, and thus quickly inform nest mates of perceived threats. With a speaker modified to record and deliver vibratory signals, we obtained drumming signals of distressed ants on a Douglas fir veneer, and bioassayed signal effects on ants in an arena with a suspended veneer floor. In response playback of vibratory signals, ants ran rapidly, or froze, but did not approach the vibratory signals. Exposed to alarm pheromone, ants frequently visited the pheromone source. However, concurrently exposed to both alarm pheromone and vibratory signals, ants visited the pheromone source less often but spent more time "frozen." The ants' modulated responses to bimodal signals seem adaptive but the reproductive fitness benefits are still to be quantified.

2.
Sci Rep ; 14(1): 5727, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459134

RESUMO

Few studies have investigated the relative contribution of specific nutrients to momentary and season-long foraging responses by ants. Using western carpenter ants, Camponotus modoc, and European fire ants, Myrmica rubra, as model species, we: (1) tested preferential consumption of various macro- and micro-nutrients; (2) compared consumption of preferred macro-nutrients; (3) investigated seasonal shifts (late May to mid-September) in nutrient preferences; and (4) tested whether nutrient preferences of C. modoc and M. rubra pertain to black garden ants, Lasius niger, and thatching ants, Formica aserva. In laboratory and field experiments, we measured nutrient consumption by weighing Eppendorf tubes containing aqueous nutrient solutions before and after feeding by ants. Laboratory colonies of C. modoc favored nitrogenous urea and essential amino acids (EAAs), whereas M. rubra colonies favored sucrose. Field colonies of C. modoc and M. rubra preferentially consumed EAAs and sucrose, respectively, with no sustained shift in preferred macro-nutrient over the course of the foraging season. The presence of a less preferred macro-nutrient in a nutrient blend did not diminish the blend's 'appeal' to foraging ants. Sucrose and EAAs singly and in combination were equally consumed by L. niger, whereas F. aserva preferred EAAs. Baits containing both sucrose and EAAs were consistently consumed by the ants studied in this project and should be considered for pest ant control.


Assuntos
Formigas , Animais , Estações do Ano , Formigas/fisiologia , Nutrientes , Sacarose , Comportamento Alimentar
3.
R Soc Open Sci ; 8(8): 210804, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430049

RESUMO

Ants select sustained carbohydrate resources, such as aphid honeydew, based on many factors including sugar type, volume and concentration. We tested the hypotheses (H1-H3) that western carpenter ants, Camponotus modoc, seek honeydew excretions from Cinara splendens aphids based solely on the presence of sugar constituents (H1), prefer sugar solutions containing aphid-specific sugars (H2) and preferentially seek sugar solutions with higher sugar content (H3). We further tested the hypothesis (H4) that workers of both Ca. modoc and European fire ants, Myrmica rubra, selectively consume particular mono-, di- and trisaccharides. In choice bioassays with entire ant colonies, sugar constituents in honeydew (but not aphid-specific sugar) as well as sugar concentration affected foraging decisions by Ca. modoc. Both Ca. modoc and M. rubra foragers preferred fructose to other monosaccharides (xylose, glucose) and sucrose to other disaccharides (maltose, melibiose, trehalose). Conversely, when offered a choice between the aphid-specific trisaccharides raffinose and melezitose, Ca. modoc and M. rubra favoured raffinose and melezitose, respectively. Testing the favourite mono-, di- and trisaccharide head-to-head, both ant species favoured sucrose. While both sugar type and sugar concentration are the ultimate cause for consumption by foraging ants, strong recruitment of nest-mates to superior sources is probably the major proximate cause.

4.
J Chem Ecol ; 46(3): 361, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32124137

RESUMO

The original version of this article unfortunately contained a mistake.

5.
Insects ; 10(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683791

RESUMO

Ants deposit trail pheromones that guide nestmates to food sources. We tested the hypotheses that ant community members (Western carpenter ants, Camponotus modoc; black garden ants, Lasius niger; European fire ants, Myrmica rubra) (1) sense, and follow, each other's trail pheromones, and (2) fail to recognize trail pheromones of allopatric ants (pavement ants, Tetramorium caespitum; desert harvester ants, Novomessor albisetosus; Argentine ants, Linepithema humilis). In gas chromatographic-electroantennographic detection analyses of a six-species synthetic trail pheromone blend (6-TPB), La. niger, Ca. modoc, and M. rubra sensed the trail pheromones of all community members and unexpectedly that of T. caespitum. Except for La. niger, all species did not recognize the trail pheromones of N. albisetosus and Li. humilis. In bioassays, La. niger workers followed the 6-TPB trail for longer distances than their own trail pheromone, indicating an additive effect of con- and hetero-specific pheromones on trail-following. Moreover, Ca. modoc workers followed the 6-TPB and their own trail pheromones for similar distances, indicating no adverse effects of heterospecific pheromones on trail-following. Our data show that ant community members eavesdrop on each other's trail pheromones, and that multiple pheromones can be combined in a lure that guides multiple species of pest ants to lethal food baits.

6.
J Chem Ecol ; 45(11-12): 901-913, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31773376

RESUMO

Trail pheromones deposited by ants lead nestmates to food sources. Based on previous evidence that the trail pheromone of the carpenter ant Camponotus modoc originates from the hindgut, our objective in this study was to identify the key component(s) of the pheromone. We collected C. modoc colonies from conifer forests and maintained them in an outdoor enclosure near our laboratory for chemical analyses and behavioral experiments. In gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometric analyses of worker ant hindgut extracts, we identified five candidate components: 2,4-dimethylhexanoic acid, 2,4-dimethyl-5-hexanolide, pentadecane, dodecanoic acid and 3,4-dihydro-8-hydroxy-3,5,7-trimethylisocoumarin. In a series of trail-following experiments, ants followed trails of synthetic 2,4-dimethyl-5-hexanolide, a blend of the five compounds, and hindgut extract over similar distances, indicating that the hexanolide accounted for the entire behavioral activity of the hindgut extract. The hexanolide not only mediated orientation of C. modoc foragers on trails, it also attracted them over distance, indicating a dual function. Further analyses and bioassays with racemic and stereoselectively synthesized hexanolides revealed that the ants produce, and respond to, the (2S,4R,5S)-stereoisomer. The same stereoisomer is a trail pheromone component in several Camponotus congeners, indicating significant overlap in their respective trail pheromone communication systems.


Assuntos
Misturas Complexas/análise , Feromônios/análise , Alcanos/análise , Animais , Formigas , Comportamento Animal , Técnicas Biossensoriais/métodos , Caproatos/análise , Cumarínicos/análise , Glândulas Exócrinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Intestinos/química , Ácidos Láuricos/análise , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA